The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence.
نویسندگان
چکیده
Bacteria sense their population density and coordinate the expression of target genes, including virulence factors in Gram-negative bacteria, by the N-acylhomoserine lactones (AHLs)-dependent quorum-sensing (QS) mechanism. In contrast, several soil bacteria are able to interfere with QS by enzymatic degradation of AHLs, referred to as quorum quenching. A potent AHL-degrading enzyme, AiiA, of Bacillus thuringiensis has been reported to effectively attenuate the virulence of bacteria by quorum quenching. However, little is known about the role of AiiA in B. thuringiensis itself. In the present study, an aiiA-defective mutant was generated to investigate the role of AiiA in rhizosphere competence in the root system of pepper. The aiiA mutant showed no detectable AHL-degrading activity and was less effective for suppression of soft-rot symptom caused by Erwinia carotovora on the potato slice. On the pepper root, the survival rate of the aiiA mutant significantly decreased over time compared with that of wild type. Interestingly, viable cell count analysis revealed that the bacterial number and composition of E. carotovora were not different between treatments of wild type and the aiiA mutant, although root application of the aiiA mutant in pepper failed to protect the plant from root rot. These results provide evidence that AiiA can play an important role in rhizosphere competentce of B. thuringiensis and bacterial quorum quenching to Gram-negative bacteria without changing bacterial number or composition.
منابع مشابه
Mechanism of the Quorum-Quenching Lactonase (AiiA) from Bacillus thuringiensis. 1. Product-Bound Structures†‡
Enzymes capable of hydrolyzing N-acyl- l-homoserine lactones (AHLs) used in some bacterial quorum-sensing pathways are of considerable interest for their ability to block undesirable phenotypes. Most known AHL hydrolases that catalyze ring opening (AHL lactonases) are members of the metallo-beta-lactamase enzyme superfamily and rely on a dinuclear zinc site for catalysis and stability. Here we ...
متن کاملIdentification of quorum-quenching N-acyl homoserine lactonases from Bacillus species.
A range of gram-negative bacterial species use N-acyl homoserine lactone (AHL) molecules as quorum-sensing signals to regulate different biological functions, including production of virulence factors. AHL is also known as an autoinducer. An autoinducer inactivation gene, aiiA, coding for an AHL lactonase, was cloned from a bacterial isolate, Bacillus sp. strain 240B1. Here we report identifica...
متن کاملGenes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis.
Gram-negative bacteria can communicate with each other by N-acyl homoserine lactones (AHLs), which are quorum-sensing autoinducers. Recently, the aiiA gene (encoding an enzyme catalyzing the degradation of AHL) has been cloned from Bacillus sp. strain 240B1. During investigations in the course of the ongoing Bacillus thuringiensis subsp. morrisoni genome project, an aiiA homologue gene in the g...
متن کاملMechanism of the Quorum-Quenching Lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate Modeling and Active Site Mutations†
The N-acyl- l-homoserine lactone hydrolases (AHL lactonases) have attracted considerable attention because of their ability to quench AHL-mediated quorum-sensing pathways in Gram-negative bacteria and because of their relation to other enzymes in the metallo-beta-lactamase superfamily. To elucidate the detailed catalytic mechanism of AHL lactonase, mutations are made on residues that presumably...
متن کاملIsolation and identification of new beneficial bacterial strains from rhizosphere of Citrus sinensis orchards
The rhizosphere is the area around the root of a plant occupied by a unique population of usefulbacteria known as plant growth promoting rhizobacteria (PGPR). In this study, the isolation andidentification of rhizobacteria from orange (Citrus sinensis) orchards using 16S rRNA gene, as well asbiological and biochemical assays is reported. Analysis of 16S rRNA gene was confirmed bybiological and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microbiology and biotechnology
دوره 18 9 شماره
صفحات -
تاریخ انتشار 2008